Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Asian American Policy Review ; 33:14-27, 2023.
Article in English | ProQuest Central | ID: covidwho-2313667

ABSTRACT

These are just three of more than 11,000 reports of hate against Asian Americans and Pacific Islanders (AAPIs) shared with the Stop AAPI Hate coalition during the first two years of the COVID-19 pandemic. Many more acts continue to go unreported, making the actual number much higher-potentially in the millions. Reports of anti-AAPI hate come from all fifty states and the District of Columbia, with nearly 40 percent from California. In response to the rise in hate against AAPI communities, Stop AAPI Hate introduced No Place for Hate California, a package of first-in-the-nation, state-level policy proposals. Together, these proposals take a gender-based, public health, and civil rights approach to addressing the racialized and sexualized verbal harassment experienced by AAPIs (especially AAPI women) in public, which comprise a majority of the reports submitted to Stop AAPI Hate. Stop AAPI Hate partnered with state legislators and mobilized a coalition of over fifty community-based organizations.

2.
mBio ; 13(5): e0214122, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2001782

ABSTRACT

Examining the neutralizing capacity of monoclonal antibodies (MAbs) used to treat COVID-19, as well as antibodies recovered from unvaccinated, previously vaccinated, and infected individuals, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) remains critical to study. Here, we report on a SARS-CoV-2 nosocomial outbreak caused by the SARS-CoV-2 R.1 variant harboring the E484K mutation in a 281-bed psychiatric facility in New Jersey among unvaccinated inpatients and health care professionals (HCPs). A total of 81 inpatients and HCPs tested positive for SARS-Cov-2 by reverse transcription (RT)-PCR from 29 October 9 to 30 November 2020. The R.1 variant exhibits partial or complete resistance to two MAbs in clinical use, as well as 2 receptor binding domain MAbs and 4 N-terminal domain (NTD) MAbs. NTD MAbs against pseudovirus harboring single characteristic R.1 mutations highlight the role of S255F in loss of activity. Additionally, we note dampened neutralization capacity by plasma from individuals with previous SARS-CoV-2 infection or sera from vaccinated individuals. The relative resistance of the R.1 variant is likely lower than that of B.1.351 and closer to that of P.1 and B.1.526. The R.1 lineage has been reported in 47 states in the United States and 40 countries. Although high proportions exhibited symptoms (26% and 61% among patients and HCPs, respectively) and relative antibody resistance, we detected only 10 R.1 variants from over 2,900 samples (~0.34%) collected from January to October 2021. Among 3 vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. IMPORTANCE The neutralizing capacities of monoclonal antibodies used to treat COVID-19 and of those recovered from previously infected and vaccinated individuals against SARS-CoV-2 variants of concern (VOCs) remain important questions. We report on a nosocomial outbreak caused by a SARS-CoV-2 R.1 variant harboring an E484K mutation among 81 unvaccinated inpatients and health care professionals. We note high attack rates with symptoms in nearly 50% of infected individuals, in sharp contrast to an unrelated institutional outbreak caused by the R.1 variant among a vaccinated population. We found little evidence of significant community spillover. This variant exhibits partial or complete resistance to two monoclonal antibodies in clinical use and dampened the neutralization capacity of convalescent-phase plasma from individuals with previous infection or sera from vaccinated individuals. Among three vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. These findings underscore the importance of vaccination for prevention of symptomatic COVID-19 disease.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , Neutralization Tests , Antibodies, Viral , New Jersey/epidemiology , Antibodies, Neutralizing , Disease Outbreaks , Antibodies, Monoclonal , Genomics
3.
Mult Scler Relat Disord ; 57: 103433, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1549996

ABSTRACT

BACKGROUND: Patients with autoimmune disease and on immunotherapy were largely excluded from seminal anti-SARS-CoV-2 vaccine trials. This has led to significant vaccine hesitancy in patients with neuroinflammatory diseases (NID); including, but not limited to: multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), neurosarcoidosis and myelin oligodendrocyte antibody-mediated disease (MOG-AD). Data is urgently needed to help guide clinical care in the NID population. METHODS: This was a cross-sectional observational study evaluating adults with a neurologist-confirmed diagnosis of a neuroinflammatory disease (NID) and a neurologically asymptomatic control population. Participants were recruited from multiple academic centers participating in the MS Resilience to COVID-19 Collaborative study. We analyzed participant responses from a vaccine-specific questionnaire collected between February and May 2021. RESULTS: 1164 participants with NID and 595 controls completed the vaccine survey. Hesitancy rates were similar between NID and control groups (n = 134, 32.7% NID vs. n = 56, 30.6% control; p = 0.82). The most common reasons for hesitancy in NID participants were lack of testing in the autoimmune population and fear of demyelinating/neurologic events. Unvaccinated patients who had discussed vaccination with their doctor were less likely to be hesitant (n=184, 73.6% vs. n=83, 59.7%; p = 0.007). 634 NID patients and 332 controls had received at least one dose of a vaccine against SARS-CoV-2 at the time of survey completion. After adjusting for age, BMI, and comorbidities, there was no difference in self-reported side effects (SE) between groups with the first dose (n = 256, 42.2% NID vs. 141, 45.3% control; p = 0.20) or second dose (n = 246, 67.0% NID vs. n = 114, 64.8% control, p = 0.85) of the mRNA vaccines nor with the viral-vector vaccines (n = 6, 46% NID vs. n = 8, 66% control; p = 0.39). All reported SEs fell into the expected SE profile. There was no difference in report of new/recurrent neurologic symptoms (n = 110, 16.2% vaccinated vs. 71, 18.2% unvaccinated; p = 0.44) nor radiologic disease activity (n = 40, 5.9% vaccinated vs. n = 30, 7.6% unvaccinated) between vaccinated and unvaccinated NID participants. CONCLUSIONS: We found no difference in patient-reported vaccine side effects and no evidence of NID worsening after vaccination. Large-scale real-world evidence is needed for further validation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Neuroinflammatory Diseases , Vaccination
4.
Microbiol Spectr ; 9(3): e0188221, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1522930

ABSTRACT

Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called variants of concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated health care professionals (HCP). Our postvaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network identified all vaccinated HCPs who tested positive for COVID-19 after routine screening or after self-reporting. From 1 January 2021 to 30 April 2021, 23,687 HCPs received either mRNA-1273 or BNT162b2 mRNA vaccine. All available postvaccination SARS-CoV-2 samples and a random collection from nonvaccinated patients during the similar time frame were subjected to VOC screening and whole-genome sequencing (WGS). Sixty-two percent (23,697/37,500) of HCPs received at least one vaccine dose, with 60% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; percentage of concurrent nonvaccinated samples was 37% (523/1,404) and 20% (284/1,394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and nonvaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any receptor-binding domain (RBD)/N-terminal domain (NTD) polymorphism between groups (P > 0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent VOCs among nonvaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants with high transmission potential and immune evasion properties, the so-called variants of concern (VOC), continue to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from partial/fully vaccinated health care professionals and probe specifically for VOC enrichment. Our findings support the high level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the nonvaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered postvaccination appears to proportionally represent the observed viral diversity within the community.


Subject(s)
COVID-19 Vaccines , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Health Personnel , Molecular Epidemiology , SARS-CoV-2/genetics , Vaccination , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , BNT162 Vaccine , COVID-19/virology , Female , Genotype , Humans , Male , Middle Aged , Mutation , New Jersey , Pandemics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus , Whole Genome Sequencing , Young Adult
6.
Emerg Microbes Infect ; 10(1): 994-997, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1225582

ABSTRACT

Spike protein mutations E484K and N501Y carried by SARS-CoV-2 variants have been associated with concerning changes of the virus, including resistance to neutralizing antibodies and increased transmissibility. While the concerning variants are fast spreading in various geographical areas, identification and monitoring of these variants are lagging far behind, due in large part to the slow speed and insufficient capacity of viral sequencing. In response to the unmet need for a fast and efficient screening tool, we developed a single-tube duplex molecular assay for rapid and simultaneous identification of E484K and N501Y mutations from nasopharyngeal swab (NS) samples within 2.5 h from sample preparation to report. Using this tool, we screened a total of 1135 clinical NS samples collected from COVID patients at 8 hospitals within the Hackensack Meridian Health network in New Jersey between late December 2020 and March 2021. Our data revealed dramatic increases in the frequencies of both E484K and N501Y over time, underscoring the need for continuous epidemiological monitoring.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Genotype , Humans , Nasopharynx/virology , New Jersey/epidemiology , RNA, Viral/chemistry , RNA, Viral/genetics , Sensitivity and Specificity , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL